The electric field strength is 2.50×104 N/C inside a parallel-plate capacitor with a 1.50 mm spacing. An electron is released from rest at the negative plate.
-----------------------------------------------------------------------------------------------------
PART A:
What is the electron's speed when it reaches the positive plate?
Express your answer with the appropriate units.
SOLUTION:
Givens / conversions:
E = 2.50×104 N/C
d =1.50 mm = 0.0015 m
we also need to know the properties of an electron
qe = -1.60×10-19 C
me = 9.11×10-31 kg
Using the energy equations:
ΔPE = Uf - Ui = qEd2 - qEd1
since it goes from x = d to x = 0,
ΔPE = qEd
ΔKE = Kf - Ki = ½m(vf2 - vi2)
since we know that it starts at rest...
ΔKE = ½mvf2
ΣEnergy = 0: ΔPE + ΔKE = 0
qEd + ½mvf2 = 0
now solve for vf...
vf = [-2qEd/m]½
plug in values...
vf = [-2(-1.60×10-19 C)⋅(2.50×104 N/C )⋅(0.0015 m)/(9.11×10-31kg)]½
⇒ ∴ vf = 3.629×106 m/s
vf = 3.63×106 m/s-----------------------------------------------------------------------------------------------------
very gud ty!
ReplyDelete