Search. Or just try integrating....

Tuesday, February 21, 2017

28: Problem 28.2

INTRO:
The electric field strength is 2.50×104 N/C inside a parallel-plate capacitor with a 1.50 mm spacing. An electron is released from rest at the negative plate.

-----------------------------------------------------------------------------------------------------

PART A:
What is the electron's speed when it reaches the positive plate?
Express your answer with the appropriate units.

SOLUTION:
Givens / conversions:
E = 2.50×104 N/C 
d =1.50 mm = 0.0015 m

we also need to know the properties of an electron
qe = -1.60×10-19 C
me = 9.11×10-31 kg

Using the energy equations:
ΔPE = Uf - Ui = qEd2 - qEd1
since it goes from x = d to x = 0,
ΔPE = qEd​

ΔKE = Kf - Ki = ½m(vf2 - vi2)
since we know that it starts at rest... 
ΔKE = ½mvf2

ΣEnergy = 0: ΔPE + ΔKE = 0
qEd + ½mvf2 = 0

now solve for vf... 
vf = [-2qEd/m]½

plug in values... 
vf = [-2(-1.60×10-19 C)⋅(2.50×104 N/C )⋅(0.0015 m)/(9.11×10-31kg)]½
⇒ ∴ vf =​ 3.629×106 m/s
vf =​ 3.63×106 m/s
-----------------------------------------------------------------------------------------------------

1 comment: