None
|
|
---|
-----------------------------------------------------------------------------------------------------
PART A:
What is the net electric flux through the cylinder (a) shown in (Figure 1) ?
Express your answer in terms of the variables E, R, and the constant π.
SOLUTION:
Gauss's Law: ΦE=∫E⋅dA
∫E = (EIN - EOUT)
Area: A = πr2 = π(1/2 ⋅ 2R)2 normal vector = i^
A = πR2i^
∫E = (Ei^ - Ei^) = 0ΦE= [(Ei^ - Ei^) = 0]⋅(πR2)i^
ΦE = 0
-----------------------------------------------------------------------------------------------------
PART B:
What is the net electric flux through the cylinder (b) shown in (Figure 2) ?
Express your answer in terms of the variables E, R, and the constant π.
SOLUTION:
Gauss's Law: ΦE=∫E⋅dA
∫E = (EIN - EOUT)
Area: A = πr2 = π(1/2 ⋅ 2R)2 normal vector = i^
A = πR2i^
∫E = (Ei^ - (-Ei^)) = 2Ei^
ΦE= (2Ei^)⋅(πR2)i^
ΦE = 2EπR2
No comments:
Post a Comment