Search. Or just try integrating....

Sunday, February 5, 2017

27: Problem 27.16

INTRO:
None
Figure 1
Figure 2

-----------------------------------------------------------------------------------------------------


PART A:

What is the net electric flux through the cylinder (a) shown in (Figure 1) ?
Express your answer in terms of the variables E, R, and the constant π.

SOLUTION:

Gauss's Law: ΦE=∫E⋅dA
∫E = (EIN - EOUT)

Area: A = πr2 = π(1/2 ⋅ 2R)2        normal vector = i^
A = πR2i^
∫E = (Ei^ - Ei^) = 0

ΦE= [(Ei^ - Ei^) = 0]⋅(πR2)i^
ΦE = 0

-----------------------------------------------------------------------------------------------------

PART B:

What is the net electric flux through the cylinder (b) shown in (Figure 2) ?
Express your answer in terms of the variables E, R, and the constant π.

SOLUTION:
Gauss's Law: ΦE=∫E⋅dA
∫E = (EIN - EOUT)

Area: A = πr2 = π(1/2 ⋅ 2R)2        normal vector = i^
A = πR2i^
∫E = (Ei^ - (-Ei^)) = 2Ei^

ΦE= (2Ei^)⋅(πR2)i^
ΦE = 2EπR2

No comments:

Post a Comment